New Results in Tropical Discrete Geometry
نویسندگان
چکیده
Following the recent work of Develin and Sturmfels and others (see, e.g., [10, 16, 2, 11]), we investigate discrete geometric questions over the tropical semiring (R, min, +). Specifically, we obtain the following tropical analogues of classical theorems in convex geometry: a separation theorem for a pair of disjoint tropical polytopes by tropical halfspaces and tropical versions of Radon’s lemma, Helly’s theorem, the Centerpoint theorem, and Tverberg’s theorem, including algorithms to find tropical centerpoints and Tverberg points. We also prove tropical analogues of the colored Carathéodory and colored Tverberg theorems. Furthermore, we study the tropical analogues of k-sets and levels in halfspace arrangements and obtain tight bounds of Θ(nd−1) for the number of tropical halving sets in any fixed dimension d.
منابع مشابه
A Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry
A novel discrete singular convolution (DSC) formulation is presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...
متن کاملElectronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method
We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...
متن کاملA new conforming mesh generator for three-dimensional discrete fracture networks
Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...
متن کاملSingular Tropical Hypersurfaces
We study the notion of singular tropical hypersurfaces of any dimension. We characterize the singular points in terms of tropical Euler derivatives and we give an algorithm to compute all singular points. We also describe non-transversal intersection points of planar tropical curves.
متن کاملTropical Surface Singularities
In this paper, we study tropicalisations of singular surfaces in toric threefolds. We completely classify singular tropical surfaces of maximaldimensional geometric type, show that they can generically have only finitely many singular points, and describe all possible locations of singular points. More precisely, we show that singular points must be either vertices, or generalized midpoints and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008